Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Gut Microbes ; 16(1): 2307542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319728

RESUMO

The gut microbiota and Short-chain fatty acids (SCFAs) can influence the progression of diseases, yet the role of these factors on gastric cancer (GC) remains uncertain. In this work, the analysis of the gut microbiota composition and SCFA content in the blood and feces of both healthy individuals and GC patients indicated that significant reductions in the abundance of intestinal bacteria involved in SCFA production were observed in GC patients compared with the controls. ABX mice transplanted with fecal microbiota from GC patients developed more tumors during the induction of GC and had lower levels of butyric acid. Supplementation of butyrate during the induction of gastric cancer along with H. pylori and N-methyl-N-nitrosourea (MNU) in WT in GPR109A-/-mice resulted in fewer tumors and more IFN-γ+ CD8+ T cells, but this effect was significantly weakened after knockout of GPR109A. Furthermore, In vitro GC cells and co-cultured CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells, as well as in vivo tumor-bearing studies, have indicated that butyrate enhanced the killing function of CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells against GC cells through G protein-coupled receptor 109A (GPR109A) and homologous domain protein homologous box (HOPX). Together, these data highlighted that the restoration of gut microbial butyrate enhanced CD8+ T cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC carcinogenesis, which suggests a novel theoretical foundation for GC management against GC.


Assuntos
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Camundongos , Animais , Butiratos/metabolismo , Microbioma Gastrointestinal/fisiologia , Linfócitos T CD8-Positivos , Ácidos Graxos Voláteis/metabolismo , Ácido Butírico , Claudinas
2.
Org Biomol Chem ; 22(11): 2279-2283, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407278

RESUMO

Here, we demonstrate a practical method toward the facile synthesis of CF3-containing amino acids through visible light promoted decarboxylative cross-coupling of a redox-active ester with tert-butyl 2-(trifluoromethyl)acrylate. The reaction was driven by the photochemical activity of electron donor-acceptor (EDA) complexes that were formed by the non-covalent interaction between a Hantzsch ester and a redox-active ester. The advantages of this protocol are its synthetic simplicity, rich functional group tolerance, and a cost-effective reaction system.

3.
J Transl Med ; 22(1): 117, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291470

RESUMO

BACKGROUND: Radioresistance is a primary factor contributing to the failure of rectal cancer treatment. Immune suppression plays a significant role in the development of radioresistance. We have investigated the potential role of phosphatidylinositol transfer protein cytoplasmic 1 (PITPNC1) in regulating immune suppression associated with radioresistance. METHODS: To elucidate the mechanisms by which PITPNC1 influences radioresistance, we established HT29, SW480, and MC38 radioresistant cell lines. The relationship between radioresistance and changes in the proportion of immune cells was verified through subcutaneous tumor models and flow cytometry. Changes in the expression levels of PITPNC1, FASN, and CD155 were determined using immunohistochemistry and western blotting techniques. The interplay between these proteins was investigated using immunofluorescence co-localization and immunoprecipitation assays. Additionally, siRNA and lentivirus-mediated gene knockdown or overexpression, as well as co-culture of tumor cells with PBMCs or CD8+ T cells and establishment of stable transgenic cell lines in vivo, were employed to validate the impact of the PITPNC1/FASN/CD155 pathway on CD8+ T cell immune function. RESULTS: Under irradiation, the apoptosis rate and expression of apoptosis-related proteins in radioresistant colorectal cancer cell lines were significantly decreased, while the cell proliferation rate increased. In radioresistant tumor-bearing mice, the proportion of CD8+ T cells and IFN-γ production within immune cells decreased. Immunohistochemical analysis of human and animal tissue specimens resistant to radiotherapy showed a significant increase in the expression levels of PITPNC1, FASN, and CD155. Gene knockdown and rescue experiments demonstrated that PITPNC1 can regulate the expression of CD155 on the surface of tumor cells through FASN. In addition, co-culture experiments and in vivo tumor-bearing experiments have shown that silencing PITPNC1 can inhibit FASN/CD155, enhance CD8+ T cell immune function, promote colorectal cancer cell death, and ultimately reduce radioresistance in tumor-bearing models. CONCLUSIONS: PITPNC1 regulates the expression of CD155 through FASN, inhibits CD8+ T cell immune function, and promotes radioresistance in rectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Retais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias Colorretais/genética , Ácido Graxo Sintase Tipo I/metabolismo , Imunidade , Neoplasias Retais/radioterapia
4.
Dev Comp Immunol ; 151: 105108, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040044

RESUMO

The spleen is postulated to be a hematopoietic tissue in adult fish; however, clear evidence is still lacking to define its role in hematopoietic activity. In our previous study, a congenitally asplenic zebrafish was generated though gene editing, which provided a new perspective for studying the role of fish spleen in hematopoiesis. In this study, HSC-regulated and erythrocyte marker genes, such as gata1a, gata2, klf1, hbaa1, hbaa2, hbba1 and hbba2 were significantly reduced in congenitally asplenic zebrafish when compared with wild-type (WT). Subsequently, we conducted the transcriptome profiles of whole kidneys from WT and congenitally asplenic zebrafish to explore the possible molecular mechanisms underlying the impaired erythropoiesis caused by congenital asplenia. Our results demonstrated that congenital asplenia might impair heme-iron recycling during erythropoiesis, as evidenced by significant down-regulation of genes associated with iron acquisition (tfr1a, tfa, steap3 and slc25a37) and heme biosynthesis and transport (alas2, fech, uros, urod, copx, ppox and abcb10) in congenitally asplenic zebrafish. In addition, the down-regulation of hemopoiesis-related GO terms, including heme binding, tetrapyrrole binding, iron ion binding, heme metabolic process, heme biosynthetic process, erythrocyte differentiation, iron ion homeostasis and hemoglobin metabolic process confirmed the impaired erythropoiesis induced by congenital asplenia. Our study provides an in-depth understanding of spleen function in regulating heme-iron homeostasis during hematopoiesis, thereby providing valuable insights into pathological responses in splenectomized or congenitally asplenic patients.


Assuntos
Eritropoese , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Heme/metabolismo , Ferro/metabolismo
5.
PLoS One ; 18(9): e0286841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768965

RESUMO

OBJECTIVE: Successful prognosis is crucial for the management and treatment of osteosarcoma (OSC). This study aimed to predict the cancer-specific survival rate in patients with OSC using deep learning algorithms and classical Cox proportional hazard models to provide data to support individualized treatment of patients with OSC. METHODS: Data on patients diagnosed with OSC from 2004 to 2017 were obtained from the Surveillance, Epidemiology, and End Results database. The study sample was then divided randomly into a training cohort and a validation cohort in the proportion of 7:3. The DeepSurv algorithm and the Cox proportional hazard model were chosen to construct prognostic models for patients with OSC. The prediction efficacy of the model was estimated using the concordance index (C-index), the integrated Brier score (IBS), the root mean square error (RMSE), and the mean absolute error (SME). RESULTS: A total of 3218 patients were randomized into training and validation groups (n = 2252 and 966, respectively). Both DeepSurv and Cox models had better efficacy in predicting cancer-specific survival (CSS) in OSC patients (C-index >0.74). In the validation of other metrics, DeepSurv did not have superiority over the Cox model in predicting survival in OSC patients. CONCLUSIONS: After validation, our CSS prediction model for patients with OSC based on the DeepSurv algorithm demonstrated satisfactory prediction efficacy and provided a convenient webpage calculator.

6.
Front Oncol ; 13: 1144775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274237

RESUMO

Objective: To explore the relationship between flavin-containing monooxygenases (FMOs) and peritoneal metastasis (PM) in gastric cancer (GC). Materials and methods: TIMER 2.0 was used to perform pan-cancer analysis and assess the correlation between the expression of FMOs and cancers. A dataset from The Cancer Genome Atlas (TCGA) was used to analyze the correlation between FMOs and clinicopathological features of GC. PM is well established as the most common mode of metastasis in GC. To further analyze the correlation between FMOs and PM of GC, a dataset was obtained from the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database. The results were validated by immunohistochemistry. The relationship between FMOs and PM of GC was explored, and a novel PM risk signature was constructed by least absolute shrinkage and selection operator (LASSO) regression analysis. The regression model's validity was tested by multisampling. A nomogram was established based on the model for predicting PM in GC patients. The mechanism of FMOs in GC patients presenting with PM was assessed by conducting Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses in TCGA and GEO datasets. Finally, the potential relationship between FMOs and immunotherapy was analyzed. Results: The pan-cancer analysis in TCGA and GEO datasets showed that FMO1 was upregulated, while FMO2 and FMO4 were downregulated in GC. Moreover, FMO1 and FMO2 correlated positively with the T and N stage of GC in the TCGA dataset. FMO1 and FMO2 expression was a risk factor for GC (hazard ratio: 1.112 and 1.185). The overexpression of FMO1 was significantly correlated with worse disease-free-survival (DFS) and overall survival (OS). However, no relationship was found between FMO2 expression in GC and DFS and OS. PM was highly prevalent among GC patients and typically associated with a worse prognosis. FMO1 was highly expressed in GC with PM. FMO1 and FMO2 were positively correlated with PM in GC. We identified a 12-gene panel for predicting the PM risk signature by LASSO (Area Under Curve (AUC) = 0.948, 95%CI: 0.896-1.000). A 10-gene panel for PM prediction was identified (AUC = 0.932, 95%CI: 0.874-0.990), comprising FMO1 and FMO2. To establish a model for clinical application, a 7-gene panel was established (AUC = 0.927, 95% CI: 0.877-0.977) and successfully validated by multisampling. (AUC = 0.892, 95% CI: 0.878-0.906). GO and KEGG analyses suggest that FMO1 and FMO2 regulate the extracellular matrix and cell adhesion. FMO1 and FMO2 were positively correlated with the immune score of GC, and their expression was associated with the infiltration of immune cells. Conclusion: PM in GC is strongly correlated with FMOs. Overall, FMO1 and FMO2 have huge prospects for application as novel diagnostic and therapeutic targets.

7.
Org Biomol Chem ; 21(26): 5413-5418, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334910

RESUMO

An inverse-electron-demand aza-Diels-Alder reaction between 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes under catalyst-free and additive-free conditions was developed, which provided a highly convenient and straightforward method to construct a series of polyfunctionalized tetrahydropyridines in high yields. This strategy features numerous advantages, including high efficiency, good functional group tolerance, broad substrate scope, and environmentally friendly conditions.

8.
Brain Sci ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36831735

RESUMO

The speaker's identity (who the speaker is) and linguistic information (what the speaker is saying) are essential to daily communication. However, it is unclear whether and how listeners process the two types of information differently in speech perception. The present study adopted a passive oddball paradigm to compare the identity and linguistic information processing concerning neural resource involvements and hemispheric lateralization patterns. We used two female native Mandarin speakers' real and pseudo-Mandarin words to differentiate the identity from linguistic (phonological and lexical) information. The results showed that, in real words, the phonological-lexical variation elicited larger MMN amplitudes than the identity variation. In contrast, there were no significant MMN amplitude differences between the identity and phonological variation in pseudo words. Regardless of real or pseudo words, the identity and linguistic variation did not elicit MMN amplitudes differences between the left and right hemispheres. Taken together, findings from the present study indicated that the identity information recruited similar neural resources to the phonological information but different neural resources from the lexical information. However, the identity and linguistic information processing did not show a particular hemispheric lateralization pattern at an early pre-attentive speech perception stage. The findings revealed similarities and differences between linguistic and non-linguistic information processing, contributing to a better understanding of speech perception and spoken word recognition.

9.
Am J Cancer Res ; 13(12): 5996-6010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187061

RESUMO

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, and about half of CRC patients eventually succumb to tumor metastasis. Despite this, treatment options for metastatic colon cancer remain severely limited, reflected by a 12% 5-year overall survival rate. Increasing evidence suggests that cancer stem cells (CSCs) are pivotal in driving CRC metastasis. Our study found a significant upregulation of MOGS in metastatic colorectal cancer, with high MOGS expression inversely correlating with patient prognosis. Additionally, MOGS enhances the NOTCH pathway, thus promoting stemness in CRC cells, both in vitro and in vivo. Mechanistically, MOGS may facilitate the maturation of NOTCH1 protein by promoting NOTCH1 glycosylation. Correspondingly, silencing MOGS markedly reduced invasion and stemness of CRC cells in vivo. In summary, our findings highlight the critical role of MOGS in fostering stemness and activating the NOTCH pathway in colorectal cancer cells. Disrupting the function of the MOGS/NOTCH could represent a feasible therapeutic strategy for CRC management.

10.
Front Endocrinol (Lausanne) ; 13: 965448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303867

RESUMO

B cell primary thyroid malignant lymphoma (BC-PTML) accounts for 95% of all cases of PTML. However, development of effective treatment and management strategies for BC-PTML is challenging owing to the rarity of this disease. This study assessed data from 1,152 patients in the Surveillance, Epidemiology, and End Results (SEER) database who were diagnosed with BC-PTML during 2000-2015. Patients were randomly divided into a training group (n=806) and a test group (n=346) at a ratio of 7:3 using the hold-out method. Kaplan-Meier analysis and log-rank tests were used to calculate the survival rate of patients. Subsequently, a stepwise Cox regression model was established to screen the prognostic factors of patients with BC-PTML, and these variables were used to construct a nomogram to predict 5-, 10-, and 15-year BC-PTML cancer-specific survival (CSS). The discrimination and calibration of the new model were evaluated using the concordance index (C-index) and calibration curves, and the accuracy and benefits of the model were assessed through comparison with the traditional Ann Arbor staging system using decision curve analysis (DCA). After stepwise regression, the optimal model included radiotherapy, primary site surgery, Ann Arbor Stage, chemotherapy, histological subtype, and age at diagnosis. The C-index, area under the receiver operating characteristic curve, and DCA suggested that the nomogram had improved discriminatory ability and clinical benefit compared with the Ann Arbor staging system. In summary, this study established an effective nomogram to predict CSS in patients with BC-PTML and assist clinicians in developing effective individualized treatment strategies.


Assuntos
Linfoma , Nomogramas , Humanos , Programa de SEER , Estadiamento de Neoplasias , Glândula Tireoide , Prognóstico
11.
Front Pharmacol ; 13: 879751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462906

RESUMO

Background: Tumor dormancy is an important way to develop drug resistance. This study aimed to identify the characteristics of colorectal cancer (CRC) cell dormancy. Methods: Based on the CRC cohorts, a total of 1,044 CRC patients were included in this study, and divided into a dormant subgroup and proliferous subgroup. Non-negative matrix factorization (NMF) was used to distinguish the dormant subgroup of CRC via transcriptome data of cancer tissues. Gene Set Enrichment Analysis (GSEA) was used to explore the characteristics of dormant CRC. The characteristics were verified in the cell model, which was used to predict key factors driving CRC dormancy. Potential treatments for CRC dormancy were also examined. Results: The dormant subgroup had a poor prognosis and was more likely to relapse. GSEA analysis showed two defining characteristics of the dormant subgroup, a difference in energy metabolism and synergistic effects of cancer-associated fibroblasts (CAFs), which were verified in a dormant cell model. Transcriptome and clinical data identified LMOD1, MAB21L2, and ASPN as important factors associated with cell dormancy and verified that erlotinib, and CB-839 were potential treatment options. Conclusion: Dormant CRC is associated with high glutamine metabolism and synergizes with CAFs in 5-FU resistance, and the key effectors are LMOD1, MAB21L2, and ASPN. Austocystin D, erlotinib, and CB-839 may be useful for dormant CRC.

12.
Eur J Histochem ; 66(1)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164480

RESUMO

The aim of this study was to explore the effects of miR-939 and miR-376A on the pathogenesis of ulcerative colitis (UC) by using a decoy strategy to regulate the expression of nuclear transcription factor kappa B (NF-κB) and nuclear factor of activated T cells (NFAT). Such strategies represent a potential novel treatment for UC. Quantitative polymerase chain reaction (qPCR) analysis was used to detect the differences between the expression of miR-939, miR-376a, NF-κB, NFAT in the tissue samples from the resting and active stages of UC and healthy controls, and analyzed the correlation. The electrophoretic mobility shift assay was used to validate the ability of miRNAs to bind to NF-κB and NFAT. The expression of components of the intestinal barrier in UC and changes in apoptosis-related factors were examined by western blotting, qPCR, and immunofluorescence. After a dextran sulfate sodium (DSS)-induced mouse model of UC was established, the morphological changes in the colonic tissues of mice, the changes in serum inflammatory factors, and the changes in urine protein or urine leukocytes, liver enzymes, and prothrombin time were measured to examine intestinal permeability. The expression of miR-939 and miR-376a in human UC tissue was significantly lower than that in the normal control tissue, and was negatively correlated with the expression of NF-κB and NFAT. miR-939 and miR-376a decoy strategies resulted in a beneficial increase in the expression of claudins, occludins, and ZO-1 protein and inhibited apoptosis in intestinal epithelial cells. The disease activity index of the UC model group was significantly higher than that of the normal control group. The expression of inflammatory factors in the decoy group was higher than that in the UC model group. Therefore, from the experimental results, it can be concluded that using miR-939 and miR-376a to trap NF-κB and NFAT inhibits the activation of transcription factors NF-κB and NFAT, which in turn inhibits the expression of inflammatory factors and results in partial recovery of the intestinal barrier in UC. The decoy strategy inhibited apoptosis in the target cells and had a therapeutic effect in the mice model of UC. This study provides new ideas for the development of future clinical therapies for UC.


Assuntos
Colite Ulcerativa , MicroRNAs , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Sulfato de Dextrana/uso terapêutico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos , NF-kappa B/metabolismo
13.
Ann Transl Med ; 9(18): 1414, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733966

RESUMO

BACKGROUND: Gastric adenocarcinoma (GAC), a common type of gastric cancer, poses a significant public health threat worldwide. This study aimed to determine the transcriptional regulatory mechanisms of GAC. METHODS: HTSeq-FPKM raw data were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma data collection. Subsequently, the limma package in R was used to identify differentially expressed genes (DEGs). Differentially methylated genes (DMGs), DEGs, and differentially expressed microRNAs (miRNAs) in normal, and tumor tissues of the same patients were screened and compared using R software tools. A functional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) for various DEGs, DMGs, promoter methylation, and miRNAs. DEG-specific methylation and transcription factors were analyzed using ENCODE ChIP-seq. RESULTS: DEGs were centrally modified by the histone trimethylation of lysine 27 on histone H3 (H3K27me3). Upstream transcription factors of DEGs were enriched in different ChIP-seq clusters, such as Forkhead Box M1, E2F Transcription Factor 4, and suppressor of zest 12. Integrated regulatory networks of DEGs, promoter methylation, and miRNAs were constructed. Two miRNAs (hsa-mir-1 and hsa-mir-133a) and four DEGs (A disintegrin and metalloproteinase domain 12, transcription factor AP-2 alpha, solute carrier family 5 member 7, and cadherin 19) separately played important roles in the integrated regulatory network. Therefore, these DEGs, DMGs, promoter methylation, and miRNAs may play an important role in GAC pathogenesis. CONCLUSIONS: In summary, the present study results provide insights into the oncogenesis and progression of GAC, thus accelerating the development of novel targeted GAC therapies.

14.
Ann Transl Med ; 9(20): 1543, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790749

RESUMO

BACKGROUND: Colorectal cancer (CRC) has a high worldwide incidence and mortality. Tumor metastasis is one of the primary reasons for the poor prognosis of CRC patients. However, the mechanism underlying CRC metastasis is still unclear. Myosin 1B (MYO1B) is important for cell migration and motility and is part of the myosin superfamily that contains various myosins. Studies of prostate, cervical, and head and neck cancer have revealed preliminary findings concerning the effect of MYO1B on tumor metastasis. However, the role of MYO1B in CRC metastasis, as well as its underlying mechanism, remains unknown. METHODS: Quantitative real-time PCR and immunohistochemical staining methods were used to analyze the expression of MYO1B in human CRC and normal mucosa tissues. Lentivirus vector-based MYO1B oligonucleotides and short hairpin RNA (shRNA) were used to examine the functional relevance of MYO1B in CRC cells. Co-immunoprecipitation, western blotting, and immunofluorescence assays were used to investigate the underlying mechanism of MYO1B-mediated cell migration. RESULTS: The expression of MYO1B was increased in most CRC tissues and was positively associated with a greater risk of tumor metastasis and poor prognosis for patients. MYO1B was significantly associated with the migration and invasion properties of CRC cells in vitro and in vivo. MYO1B promoted F-actin rearrangement through the ROCK2/LIMK/Cofilin axis by enhancing the activation of RhoA. MYO1B also promoted the assembly of focal adhesions by targeting RhoA. CONCLUSIONS: MYO1B plays a vital role in CRC metastasis by promoting the activation of RhoA. MYO1B may not only be a valid biomarker for predicting the risk of metastasis and poor prognosis in CRC but may also be a potential therapeutic target for patients with a high risk of tumor metastasis.

15.
BMC Gastroenterol ; 21(1): 311, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34404350

RESUMO

BACKGROUND: Gastrointestinal mucormycosis (GIM) is a rare, opportunistic fungal infection with poor prognosis. Clinically, it is difficult to diagnose GIM owing to its nonspecific clinical symptoms and poor suspicion. The estimated incidence of GIM is inaccurate, and most cases are diagnosed accidentally during surgery or upon postmortem examination. GIM usually occurs in patients with immune deficiencies or diabetes. Here, we report two cases of immunocompetent young patients with GIM who had good prognosis after treatment. Compared to other case reports on GIM, our cases had unusual infection sites and no obvious predisposing factors, which make it important to highlight these cases. CASE PRESENTATION: The first case was that of a 16-year-old immunocompetent boy who was admitted with gastrointestinal bleeding and perforation due to a gastric ulcer. Strategies used to arrest bleeding during emergency gastroscopy were unsuccessful. An adhesive mass was then discovered through laparoscopy. The patient underwent type II gastric resection. Pathological examination of the mass revealed bacterial infection and GIM. The second case was of a 33-year-old immunocompetent woman with a recent history of a lower leg sprain. The patient subsequently became critically ill and required ventilatory support. After hemodynamic stabilization and extubation, she presented with hematemesis due to exfoliation and necrosis of the stomach wall. The patient underwent total gastrectomy plus jejunostomy. The pathology results revealed severe bacterial infection and fungal infection that was confirmed as GIM. The patient fully recovered after receiving anti-infective and antifungal treatments. CONCLUSIONS: Neither patient was immunosuppressed, and both patients presented with gastrointestinal bleeding. GIM was confirmed via pathological examination. GIM is not limited to immunocompromised patients, and its diagnosis mainly relies on pathological examination. Early diagnosis, timely surgical treatment, and early administration of systemic drug treatment are fundamental to improving its prognosis.


Assuntos
Gastroenteropatias , Mucormicose , Úlcera Gástrica , Adolescente , Adulto , Feminino , Hemorragia Gastrointestinal/etiologia , Humanos , Masculino , Mucormicose/complicações , Mucormicose/diagnóstico , Úlcera
16.
Front Cell Infect Microbiol ; 11: 668859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262881

RESUMO

Splenectomy or congenital asplenia in humans increases susceptibility to infections. We have previously reported that congenital asplenia in zebrafish reduces resistance to Aeromonas hydrophila infection. However, the molecular mechanism of systemic immune response in congenitally asplenic individuals is largely unexplored. In this study, we found that pro-inflammatory cytokines were more highly induced in congenitally asplenic zebrafish than wild-type after pathogenic A. hydrophila infection and lipopolysaccharide exposure. In addition, a higher aggregation of apoptotic cells was observed in congenitally asplenic zebrafish than that in wild-type. Next, we examined the transcriptome profiles of whole kidneys from wild-type and congenitally asplenic zebrafish to investigate the effects of congenital asplenia on innate and adaptive immune responses induced by the inactivated A. hydrophila. Congenital asplenia inactivated the splenic anti-inflammatory reflex, disrupted immune homeostasis, and induced excessive inflammation as evidenced by the highly induced stress response-related biological processes, inflammatory and apoptosis-associated pathways, and pro-inflammatory cytokines/chemokines in congenitally asplenic zebrafish compared with wild-type after vaccination. In addition, complement component genes (c3a.1, c3a.6, c4, c6, and c9) and several important immune-related genes (tabp.1, tap1, hamp, prg4b, nfil3, defbl1, psmb9a, tfr1a, and sae1) were downregulated in congenitally asplenic zebrafish. Furthermore, congenital asplenia impaired adaptive immunity as demonstrated by downregulation of biological processes and signaling pathways involved in adaptive immune response after vaccination in congenitally asplenic zebrafish. The expression of MHCII/IgM was also significantly reduced in the congenitally asplenic zebrafish when compared with wild-type. Together, our study provides an in-depth understanding of spleen function in controlling immune homeostasis and may offer insight into the pathological response in splenectomized or congenitally asplenic patients after infections.


Assuntos
Esplenectomia , Peixe-Zebra , Animais , Homeostase , Humanos , Inflamação , Baço
17.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919636

RESUMO

The short-chain dehydrogenases/reductases (SDR) superfamily is involved in multiple physiological processes. In this study, genome-wide identification and comprehensive analysis of SDR superfamily were carried out in 29 animal species based on the latest genome databases. Overall, the number of SDR genes in animals increased with whole genome duplication (WGD), suggesting the expansion of SDRs during evolution, especially in 3R-WGD and polyploidization of teleosts. Phylogenetic analysis indicated that vertebrates SDRs were clustered into five categories: classical, extended, undefined, atypical, and complex. Moreover, tandem duplication of hpgd-a, rdh8b and dhrs13 was observed in teleosts analyzed. Additionally, tandem duplications of dhrs11-a, dhrs7a, hsd11b1b, and cbr1-a were observed in all cichlids analyzed, and tandem duplication of rdh10-b was observed in tilapiines. Transcriptome analysis of adult fish revealed that 93 SDRs were expressed in more than one tissue and 5 in one tissue only. Transcriptome analysis of gonads from different developmental stages showed that expression of 17 SDRs were sexually dimorphic with 11 higher in ovary and 6 higher in testis. The sexually dimorphic expressions of these SDRs were confirmed by in situ hybridization (ISH) and qPCR, indicating their possible roles in steroidogenesis and gonadal differentiation. Taken together, the identification and the expression data obtained in this study contribute to a better understanding of SDR superfamily evolution and functions in teleosts.


Assuntos
Ciclídeos/metabolismo , Redutases-Desidrogenases de Cadeia Curta/genética , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Animais , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Hibridização In Situ , Masculino , Redutases-Desidrogenases de Cadeia Curta/classificação
18.
Biology (Basel) ; 10(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513687

RESUMO

Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.

19.
Biosci Rep ; 41(2)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33492335

RESUMO

Tumor mutation burden (TMB) was a promising marker for immunotherapy. We aimed to investigate the prognostic role of TMB and its relationship with immune cells infiltration in gastric cancer (GC). We analyzed the mutation landscape of all GC cases and TMB of each GC patient was calculated and patients were divided into TMB-high and TMB-low group. Differentially expressed genes (DEGs) between the two groups were identified and pathway analysis was performed. The immune cells infiltration in each GC patient was evaluated and Kaplan-Meier analysis was performed to investigate the prognostic role of immune cells infiltration. At last, hub immune genes were identified and a TMB prognostic risk score (TMBPRS) was constructed to predict the survival outcome of GC patients. The relationships between mutants of hub immune genes and immune infiltration level in GC was investigated. We found higher TMB was correlated with better survival outcome and female patients, patients with T1-2 and N0 had higher TMB score. Altogether 816 DEGs were harvested and pathway analysis demonstrated that patients in TMB-high group were associated with neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway. The infiltration of activated CD4+ memory T cells, follicular helper T cells, resting NK cells, M0 and M1 macrophages and neutrophils in TMB-high group were higher compared than that in TMB-low group and high macrophage infiltration was correlated with inferior survival outcome of GC patients. Lastly, the TMBPRS was constructed and GC patients with high TMBPRS had poor prognosis.


Assuntos
Mutação , Neoplasias Gástricas/patologia , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia
20.
Genes (Basel) ; 11(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987694

RESUMO

Oxidation resistance gene 1 (OXR1) is essential for protection against oxidative stress in mammals, but its functions in non-mammalian vertebrates, especially in fish, remain uncertain. Here, we created a homozygous oxr1a-knockout zebrafish via the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Compared with wild-type (WT) zebrafish, oxr1a-/- mutants exhibited higher mortality and more apoptotic cells under oxidative stress, and multiple antioxidant genes (i.e., gpx1b, gpx4a, gpx7 and sod3a) involved in detoxifying cellular reactive oxygen species were downregulated significantly. Based on these observations, we conducted a comparative transcriptome analysis of early oxidative stress response. The results show that oxr1a mutation caused more extensive changes in transcriptional networks compared to WT zebrafish, and several stress response and pro-inflammatory pathways in oxr1a-/- mutant zebrafish were strongly induced. More importantly, we only observed the activation of the p53 signaling and apoptosis pathway in oxr1a-/- mutant zebrafish, revealing an important role of oxr1a in regulating apoptosis via the p53 signaling pathway. Additionally, we found that oxr1a mutation displayed a shortened lifespan and premature ovarian failure in prolonged observation, which may be caused by the loss of oxr1a impaired antioxidant defenses, thereby increasing pro-apoptotic events. Altogether, our findings demonstrate that oxr1a is vital for antioxidant defenses and anti-aging in zebrafish.


Assuntos
Antioxidantes/metabolismo , Sistemas CRISPR-Cas , Longevidade , Estresse Oxidativo , Reprodução , Transcriptoma , Proteínas de Peixe-Zebra/metabolismo , Animais , Apoptose , Mutação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...